AB68 Hartley Oscillator

> Operating Manual Ver.1.1

An ISO 9001 : 2000 company

Innovative Technology Ecosystem 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91- 731- 2555643 e mail : <u>info@scientech.bz</u> Website : <u>www.scientech.bz</u> Toll free : 1800-103-5050

AB68 Hartley Oscillator Table of Contents

1.	Introduction	4
2.	Theory	6
3.	Experiments Study of the operation of Hartley Oscillator	8
4.	Data Sheet	10
5.	Warranty	12
6.	List of Accessories	12

RoHS Compliance

Scientech Products are RoHS Complied.

RoHS Directive concerns with the restrictive use of Hazardous substances (Pb, Cd, Cr, Hg, Br compounds) in electric and electronic equipments.

Scientech products are "Lead Free" and "Environment Friendly".

It is mandatory that service engineers use lead free solder wire and use the soldering irons upto (25 W) that reach a temperature of 450° C at the tip as the melting temperature of the unleaded solder is higher than the leaded solder.

Introduction

AB68 is a compact, ready to use **Hartley Oscillator** experiment board. This is useful for students to understand functionality of Hartley oscillator. It can be used as stand alone unit with external DC Power Supply or can be used with **Scientech Analog Lab ST2612** which has built in DC Power Supply, AC Power Supply, function generator, modulation generator, continuity tester, toggle switches, and potentiometer.

List of Boards :

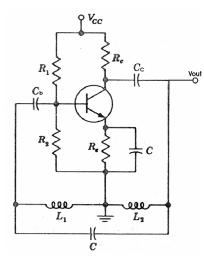
Model	Name
AB01	Diode characteristics (Si, Zener, LED)
AB02	Transistor characteristics (CB NPN)
AB03	Transistor characteristics (CB PNP)
AB04	Transistor characteristics (CE NPN)
AB05	Transistor characteristics (CE PNP)
AB06	Transistor characteristics (CC NPN)
AB07	Transistor characteristics (CC PNP)
AB08	FET characteristics
AB09	Rectifier Circuits
AB10	Wheatstone bridge
AB11	Maxwell's Bridge
AB12	De Sauty's Bridge
AB13	Schering Bridge
AB14	Darlington Pair
AB15	Common Emitter Amplifier
AB16	Common Collector Amplifier
AB17	Common Base Amplifier
AB18	RC-Coupled Amplifier
AB19	Cascode Amplifier
AB20	Direct Coupled Amplifier
AB21	Class A Amplifier
AB22	Class B Amplifier (push pull emitter follower)
AB23	Class C Tuned Amplifier
AB24	Transformer Coupled Amplifier
AB25	Phase Locked Loop (FM Demodulator & Frequency
	Divider / Multiplier)
AB26	FET Amplifier
AB27	Voltage Controlled Oscillator
AB28	Multivibrator (Mono stable/Astable)
AB29	F-V and V-F Converter
AB30	V-I and I-V Converter
AB31	Zener Voltage Regulator
AB32	Transistor Series Voltage Regulator
AB33	Transistor Shunt Voltage Regulator
AB35	DC Ammeter

AB68	
AB37	DC Ammeter (0-2mA)
AB39	Instrumentation Amplifier
AB41	Differential Amplifier (Transistorized)
AB42	Operational Amplifier (Inverting / Non-inverting / Differentiator)
AB43	Operational Amplifier (Adder/Scalar)
AB44	Operational Amplifier (Integrator/ Differentiator)
AB45	Schmitt Trigger and Comparator
AB49	K Derived Filter
AB51	Active filters (Low Pass and High Pass)
AB52	Active Band Pass Filter
AB54	Tschebyscheff Filter
AB56	Fiber Optic Analog Link
AB57	Owen's Bridge
AB58	Anderson's Bridge
AB59	Maxwell's Inductance Bridge
AB64	RC – Coupled Amplifier with Feedback
AB66	Wien Bridge Oscillators
AB67	Colpitt Oscillator
AB80	RLC Series and RLC Parallel Resonance
AB82	Thevenin's and Maximum Power Transfer Theorem
AB83	Reciprocity and Superposition Theorem
AB84	Tellegen's Theorem
AB85	Norton's theorem
AB88	Diode Clipper
AB89	Diode Clampers
AB90	Two port network parameter
AB91	Optical Transducer (Photovoltaic cell)
AB92	Optical Transducer (Photoconductive cell/LDR)
AB93	Optical Transducer (Phototransistor)
AB96	Temperature Transducer (RTD & IC335)
AB97	Temperature Transducer (Thermocouple)
AB101	DSB Modulator and Demodulator
AB102	SSB Modulator and Demodulator
AB106	FM Modulator and Demodulator
	and many more

and many more.....

Theory

Oscillators are circuits that produce periodic waveforms without input other than perhaps a trigger. They generally use some form of active device, lamp, or crystal, surrounded by passive devices such as resistors, capacitors, and inductors, to generate the output.


There are two main classes of oscillator: Relaxation and Sinusoidal. Relaxation oscillators generate the triangular, sawtooth and other nonsinuoidal waveforms. Sinusoidal oscillators consist of amplifiers with external components used to generate oscillation, or crystals that internally generate the oscillation. The focus here is on sine wave oscillators, created using operational amplifiers Op-Amps. Sine wave oscillators are used as references or test waveforms by many circuits.

An oscillator is a type of feedback amplifier in which part of the output is fed back to the input via a feedback circuit. If the signal fed back is of proper magnitude and phase, the circuit produces alternating currents or voltages. Two requirements for oscillation are:

- 1. The magnitude of the loop gain A_VB must be at least 1, and
- 2. The total phase shift of the loop gain A_VB must be equal to 0° or 360°. If the amplifier causes a phase shift of 180°, the feedback circuit must provide an additional phase shift of 180° so that the total phase shift around the loop is 360°.

Hartley Oscillator :

The Hartley oscillator is one of the simplest and best known oscillators and is used extensively in circuits, which work at radio frequencies. Figure 1 shows the basic Hartley oscillator circuit configuration. The transistor is in voltage divider bias which sets up Q-point of the circuit. The output voltage is fed back to the base and sustains oscillations developed across the tank circuit, provided there is enough voltage gain at the oscillation frequency.

Hartley Oscillator

Figure 1

The resonant frequency of the Hartley oscillator can be calculated from the tank circuit used. We can calculate the approximately resonant frequency as

$$F_r = \frac{1}{2p\sqrt{L_T C}} \tag{1}$$

Here, the Inductor used is the equivalent Inductance. In Hartley oscillator the circulating current passes through the series combination of L1 and L2. Therefore equivalent Inductance is,

$$L_T = L1 + L2 + 2 M \dots (2)$$

Where, M is the mutual inductance between two inductors. $M = K \sqrt{L_1 L_2} \dots \dots \dots \dots \dots (3)$

Where, K is the coefficient of coupling, lies between 0 to 1. The coefficient of coupling gives the extent to which two inductors are couple.

Starting condition for oscillations is

AB > l

Where,

B is approximately equal to L2/L1.

The feedback should be enough to start oscillations under all conditions as different transistor, temperature, voltage, etc. but it should not be much that you lose more output than necessary. The resonant frequency can be changed by either changing the value of inductor or changing the value of capacitor but the combination of the three components should satisfy the above given two conditions for oscillation.

Experiment

Objective :

Study of the operation of Hartley Oscillator

Equipments Needed :

- 1. Analog board of **AB68**.
- 2. DC power supplies +12V from external source or ST2612 Analog Lab.
- 3. Oscilloscope Caddo 802 or equivalent
- **4.** 2 mm patch cords.

Circuit diagram :

Circuit used to study the operation of Hartley Oscillator is as shown in figure 2.

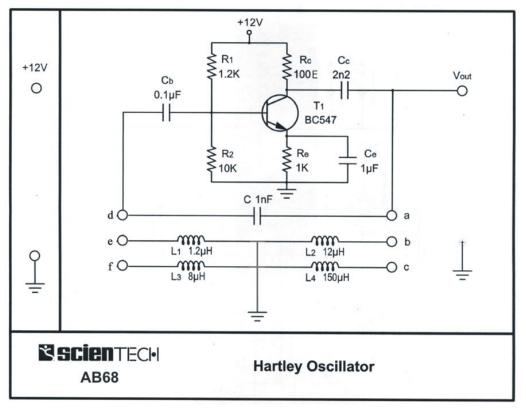
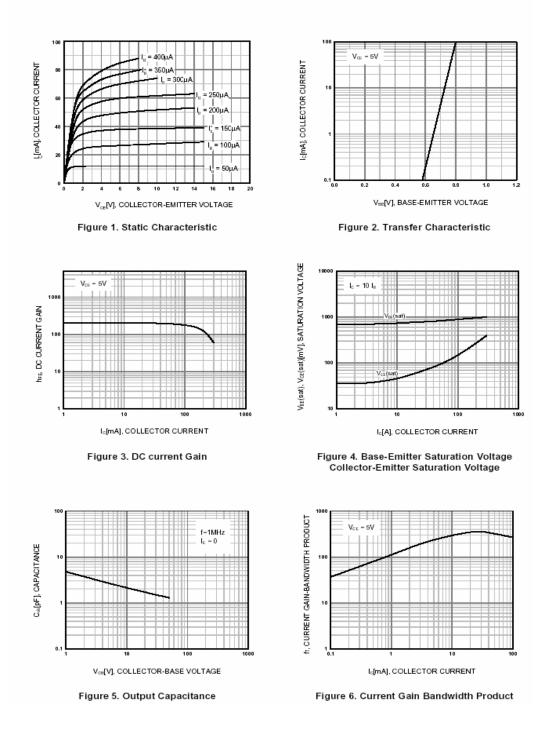


Figure 2

Procedure :

- Connect +12V DC power supplies at their indicated position from external source or **ST2612 Analog Lab**.
- 1. Connect a patch cord between points a and b and another patch cord between point d and e.
- 2. Switch on the Power Supply.
- 3. Connect Oscilloscope between Vout and ground on AB68 board.
- 4. Record the value of output frequency on oscilloscope.
- 5. Calculate the resonant frequency using equation 1.
- 6. Compare measured frequency with the theoretically calculated value.
- 7. Switch off the supply.
- 8. Remove the patch cord connected between points a and b and connect it between points a and c.
- **9.** Remove the patch cord connected between points d and e and connect it between point d and f.
- **10.** Follow the procedure from point 4 to 7.


Result :

When patch cord connected across a and b . Practically calculated Output frequency (on CRO): Theoretically calculated values Resonant frequency (fr) : (use equation 1) Output voltage amplitude: Vp-p *When patch cord connected across a and c* • Practically calculated Output frequency (on CRO) : Theoretically calculated values Resonant frequency (fr) : (use equation 1) Output voltage amplitude: Vp-p

Data Sheet

		BC546	/547/	548/549/550)				
		11 - C							
	ng ana A age: BC546, \	pplications							
	age: BC549, BC						1181		
Complem	ent to BC556	BC560				- 110	Ø		
						///			
						1			
					1666		D-92		
		Cilling Trans			1. Collect	or 2. Ba	se 3.Em	hitter	
PNE	pitaxiai	Silicon Trans	sistor						
bsolu	te Maxim	um Ratings Ta=28	5°C unless	s otherwise noted					
Symbo			meter		V	alue	U	Inits	
СВО	Colle	ctor-Base Voltage : BC5				80		V	
			47/550		1	50 30		v v	
CEO	Colle	tor-Emitter Voltage : BC			65			v v	
CEO	00	: BC547/550			- 45		v		
			48/549		30		v		
EBO	Emitt		546/547 548/549/550			6 S		V V	
Collector Current (DC)			40.040/00			100 mA			
Pc Collector Power Dissipation						500 mW		mW	
T _J Junction Temperature						150 °C			
STG	Stora	ge Temperature			-65	65 ~ 150 °C		°C	
Io otri o	ol Cham	eteriotico - area							
		cteristics Ta=25°C					1 14	1.1	
Symbol 180	Collector Ci	Parameter it-off Current	V _{CB} =30	Test Condition	Min.	Typ.	Max. 15	Units nA	
:80 FF	DC Current			/, I _C =2mA	110		800		
CE (sat)	Collector-Er	nitter Saturation Voltage				90	250	mν	
				mA, I _B =5mA		200	600	m٧	
BE (sat)	Base-Emitte	r Saturation Voltage		A, Ig=0.5mA		700		mV	
BE (01)	Rase-Emitte	r On Voltage		nA, Ig=5mA /, Ic=2mA	580	900 660	700	mV mV	
BE (on)	Door Links	i on ronage		/. Ic=10mA			720	m٧	
-	Current Gai	urrent Gain Bandwidth Product		/. Ic=10mA, f=100MHz		300		MHz	
ob	Output Cap	ut Capacitance		V _{CB} =10V, I _E =0, f=1MHz		3.5	6	рF	
b	Input Capac			5V, I _C =0, f=1MHz		9		pF	
F	Noise Figure : BC546/547/548 : BC549/550			/ Ic=200μA , Rg=2KΩ		2 1.2	10 4	dB dB	
	: BC549/550			, ι _c =200μΑ		1.4	4	dB	
		: BC550		12, f=30~15000MHz		1.4	3	dB	
C1-									
re Cla	ssificatio								
	Classification A hFE 110 ~ 220			В		C 420 ~ 800			

Typical Characteristics

Warranty

- 1. We guarantee the product against all manufacturing defects for 24 months from the date of sale by us or through our dealers. Consumables like dry cell etc. are not covered under warranty.
- 2. The guarantee will become void, if
 - a) The product is not operated as per the instruction given in the operating manual.
 - **b**) The agreed payment terms and other conditions of sale are not followed.
 - c) The customer resells the instrument to another party.
 - **d**) Any attempt is made to service and modify the instrument.
- **3.** The non-working of the product is to be communicated to us immediately giving full details of the complaints and defects noticed specifically mentioning the type, serial number of the product and date of purchase etc.
- 4. The repair work will be carried out, provided the product is dispatched securely packed and insured. The transportation charges shall be borne by the customer.

For any Technical Problem Please Contact us at service@scientech.bz

List of Accessories

1.	2 mm Patch Cords (Red)	1 No.
2.	2 mm Patch Cord (Blue)	2 Nos.
3.	2 mm Patch Cord (Black)	3 Nos.
4.	e-Manual	1 No.

Updated 30-03-2009